* Step 1: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2} / {0/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          minus#(x,0()) -> c_1()
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
          plus#(0(),y) -> c_3()
          plus#(s(x),y) -> c_4(plus#(x,y))
          quot#(0(),s(y)) -> c_5()
          quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(x,0()) -> c_1()
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            plus#(0(),y) -> c_3()
            plus#(s(x),y) -> c_4(plus#(x,y))
            quot#(0(),s(y)) -> c_5()
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
            quot(0(),s(y)) -> 0()
            quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          minus#(x,0()) -> c_1()
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
          plus#(0(),y) -> c_3()
          plus#(s(x),y) -> c_4(plus#(x,y))
          quot#(0(),s(y)) -> c_5()
          quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
* Step 3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(x,0()) -> c_1()
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            plus#(0(),y) -> c_3()
            plus#(s(x),y) -> c_4(plus#(x,y))
            quot#(0(),s(y)) -> c_5()
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Strict TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(quot#) = {1},
            uargs(c_2) = {1},
            uargs(c_4) = {1},
            uargs(c_6) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                 p(0) = [9]         
             p(minus) = [1] x1 + [1]
              p(plus) = [0]         
              p(quot) = [1] x2 + [0]
                 p(s) = [1] x1 + [1]
            p(minus#) = [13]        
             p(plus#) = [3] x1 + [0]
             p(quot#) = [1] x1 + [8]
               p(c_1) = [0]         
               p(c_2) = [1] x1 + [0]
               p(c_3) = [0]         
               p(c_4) = [1] x1 + [0]
               p(c_5) = [0]         
               p(c_6) = [1] x1 + [0]
          
          Following rules are strictly oriented:
             minus#(x,0()) = [13]           
                           > [0]            
                           = c_1()          
          
              plus#(0(),y) = [27]           
                           > [0]            
                           = c_3()          
          
             plus#(s(x),y) = [3] x + [3]    
                           > [3] x + [0]    
                           = c_4(plus#(x,y))
          
           quot#(0(),s(y)) = [17]           
                           > [0]            
                           = c_5()          
          
              minus(x,0()) = [1] x + [1]    
                           > [1] x + [0]    
                           = x              
          
          minus(s(x),s(y)) = [1] x + [2]    
                           > [1] x + [1]    
                           = minus(x,y)     
          
          
          Following rules are (at-least) weakly oriented:
          minus#(s(x),s(y)) =  [13]                       
                            >= [13]                       
                            =  c_2(minus#(x,y))           
          
           quot#(s(x),s(y)) =  [1] x + [9]                
                            >= [1] x + [9]                
                            =  c_6(quot#(minus(x,y),s(y)))
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Weak DPs:
            minus#(x,0()) -> c_1()
            plus#(0(),y) -> c_3()
            plus#(s(x),y) -> c_4(plus#(x,y))
            quot#(0(),s(y)) -> c_5()
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y))
             -->_1 minus#(x,0()) -> c_1():3
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
          
          2:S:quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
             -->_1 quot#(0(),s(y)) -> c_5():6
             -->_1 quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))):2
          
          3:W:minus#(x,0()) -> c_1()
             
          
          4:W:plus#(0(),y) -> c_3()
             
          
          5:W:plus#(s(x),y) -> c_4(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):5
             -->_1 plus#(0(),y) -> c_3():4
          
          6:W:quot#(0(),s(y)) -> c_5()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: plus#(s(x),y) -> c_4(plus#(x,y))
          4: plus#(0(),y) -> c_3()
          6: quot#(0(),s(y)) -> c_5()
          3: minus#(x,0()) -> c_1()
* Step 5: Decompose WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              minus#(s(x),s(y)) -> c_2(minus#(x,y))
          - Weak DPs:
              quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
          - Weak TRS:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
          - Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
        
        Problem (S)
          - Strict DPs:
              quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
          - Weak DPs:
              minus#(s(x),s(y)) -> c_2(minus#(x,y))
          - Weak TRS:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
          - Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
** Step 5.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Weak DPs:
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
          
          2:W:quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
             -->_1 quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
** Step 5.a:2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
** Step 5.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: minus#(s(x),s(y)) -> c_2(minus#(x,y))
          
        The strictly oriented rules are moved into the weak component.
*** Step 5.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1}
        
        Following symbols are considered usable:
          {minus#,plus#,quot#}
        TcT has computed the following interpretation:
               p(0) = [0]         
           p(minus) = [0]         
            p(plus) = [0]         
            p(quot) = [2] x2 + [0]
               p(s) = [1] x1 + [9]
          p(minus#) = [1] x2 + [0]
           p(plus#) = [0]         
           p(quot#) = [1] x1 + [0]
             p(c_1) = [1]         
             p(c_2) = [1] x1 + [0]
             p(c_3) = [1]         
             p(c_4) = [0]         
             p(c_5) = [0]         
             p(c_6) = [1]         
        
        Following rules are strictly oriented:
        minus#(s(x),s(y)) = [1] y + [9]     
                          > [1] y + [0]     
                          = c_2(minus#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
        
*** Step 5.a:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 5.a:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:minus#(s(x),s(y)) -> c_2(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: minus#(s(x),s(y)) -> c_2(minus#(x,y))
*** Step 5.a:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Weak DPs:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
             -->_1 quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))):1
          
          2:W:minus#(s(x),s(y)) -> c_2(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: minus#(s(x),s(y)) -> c_2(minus#(x,y))
** Step 5.b:2: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
          
        The strictly oriented rules are moved into the weak component.
*** Step 5.b:2.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {minus,minus#,plus#,quot#}
        TcT has computed the following interpretation:
               p(0) = [2]                  
           p(minus) = [1] x1 + [0]         
            p(plus) = [1] x2 + [0]         
            p(quot) = [8] x2 + [2]         
               p(s) = [1] x1 + [2]         
          p(minus#) = [1] x1 + [2] x2 + [0]
           p(plus#) = [1] x2 + [1]         
           p(quot#) = [4] x1 + [8] x2 + [3]
             p(c_1) = [1]                  
             p(c_2) = [2] x1 + [1]         
             p(c_3) = [1]                  
             p(c_4) = [1] x1 + [0]         
             p(c_5) = [1]                  
             p(c_6) = [1] x1 + [2]         
        
        Following rules are strictly oriented:
        quot#(s(x),s(y)) = [4] x + [8] y + [27]       
                         > [4] x + [8] y + [21]       
                         = c_6(quot#(minus(x,y),s(y)))
        
        
        Following rules are (at-least) weakly oriented:
            minus(x,0()) =  [1] x + [0]
                         >= [1] x + [0]
                         =  x          
        
        minus(s(x),s(y)) =  [1] x + [2]
                         >= [1] x + [0]
                         =  minus(x,y) 
        
*** Step 5.b:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 5.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
             -->_1 quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y)))
*** Step 5.b:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
        - Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))