* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,plus,quot} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(s(x),y) -> c_4(plus#(x,y)) quot#(0(),s(y)) -> c_5() quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(s(x),y) -> c_4(plus#(x,y)) quot#(0(),s(y)) -> c_5() quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(s(x),y) -> c_4(plus#(x,y)) quot#(0(),s(y)) -> c_5() quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(s(x),y) -> c_4(plus#(x,y)) quot#(0(),s(y)) -> c_5() quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(quot#) = {1}, uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_6) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [9] p(minus) = [1] x1 + [1] p(plus) = [0] p(quot) = [1] x2 + [0] p(s) = [1] x1 + [1] p(minus#) = [13] p(plus#) = [3] x1 + [0] p(quot#) = [1] x1 + [8] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] p(c_5) = [0] p(c_6) = [1] x1 + [0] Following rules are strictly oriented: minus#(x,0()) = [13] > [0] = c_1() plus#(0(),y) = [27] > [0] = c_3() plus#(s(x),y) = [3] x + [3] > [3] x + [0] = c_4(plus#(x,y)) quot#(0(),s(y)) = [17] > [0] = c_5() minus(x,0()) = [1] x + [1] > [1] x + [0] = x minus(s(x),s(y)) = [1] x + [2] > [1] x + [1] = minus(x,y) Following rules are (at-least) weakly oriented: minus#(s(x),s(y)) = [13] >= [13] = c_2(minus#(x,y)) quot#(s(x),s(y)) = [1] x + [9] >= [1] x + [9] = c_6(quot#(minus(x,y),s(y))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak DPs: minus#(x,0()) -> c_1() plus#(0(),y) -> c_3() plus#(s(x),y) -> c_4(plus#(x,y)) quot#(0(),s(y)) -> c_5() - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(x,0()) -> c_1():3 -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 2:S:quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) -->_1 quot#(0(),s(y)) -> c_5():6 -->_1 quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))):2 3:W:minus#(x,0()) -> c_1() 4:W:plus#(0(),y) -> c_3() 5:W:plus#(s(x),y) -> c_4(plus#(x,y)) -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):5 -->_1 plus#(0(),y) -> c_3():4 6:W:quot#(0(),s(y)) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: plus#(s(x),y) -> c_4(plus#(x,y)) 4: plus#(0(),y) -> c_3() 6: quot#(0(),s(y)) -> c_5() 3: minus#(x,0()) -> c_1() * Step 5: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Weak DPs: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} Problem (S) - Strict DPs: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} ** Step 5.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Weak DPs: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 2:W:quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) ** Step 5.a:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) ** Step 5.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: minus#(s(x),s(y)) -> c_2(minus#(x,y)) The strictly oriented rules are moved into the weak component. *** Step 5.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(minus) = [0] p(plus) = [0] p(quot) = [2] x2 + [0] p(s) = [1] x1 + [9] p(minus#) = [1] x2 + [0] p(plus#) = [0] p(quot#) = [1] x1 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [1] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] Following rules are strictly oriented: minus#(s(x),s(y)) = [1] y + [9] > [1] y + [0] = c_2(minus#(x,y)) Following rules are (at-least) weakly oriented: *** Step 5.a:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 5.a:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: minus#(s(x),s(y)) -> c_2(minus#(x,y)) *** Step 5.a:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak DPs: minus#(s(x),s(y)) -> c_2(minus#(x,y)) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))):1 2:W:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: minus#(s(x),s(y)) -> c_2(minus#(x,y)) ** Step 5.b:2: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) The strictly oriented rules are moved into the weak component. *** Step 5.b:2.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {minus,minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [2] p(minus) = [1] x1 + [0] p(plus) = [1] x2 + [0] p(quot) = [8] x2 + [2] p(s) = [1] x1 + [2] p(minus#) = [1] x1 + [2] x2 + [0] p(plus#) = [1] x2 + [1] p(quot#) = [4] x1 + [8] x2 + [3] p(c_1) = [1] p(c_2) = [2] x1 + [1] p(c_3) = [1] p(c_4) = [1] x1 + [0] p(c_5) = [1] p(c_6) = [1] x1 + [2] Following rules are strictly oriented: quot#(s(x),s(y)) = [4] x + [8] y + [27] > [4] x + [8] y + [21] = c_6(quot#(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [2] >= [1] x + [0] = minus(x,y) *** Step 5.b:2.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 5.b:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: quot#(s(x),s(y)) -> c_6(quot#(minus(x,y),s(y))) *** Step 5.b:2.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,plus#,quot#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))